Using the minimum description length principle for global reconstruction of dynamic systems from noisy time series.
نویسندگان
چکیده
An alternative approach to determining embedding dimension when reconstructing dynamic systems from a noisy time series is proposed. The available techniques of determining embedding dimension (the false nearest-neighbor method, calculation of the correlation integral, and others) are known [H. D. I. Abarbanel, (Springer-Verlag, New York, 1997)] to be inefficient, even at a low noise level. The proposed approach is based on constructing a global model in the form of an artificial neural network. The required amount of neurons and the embedding dimension are chosen so that the description length should be minimal. The considered approach is shown to be appreciably less sensitive to the level and origin of noise, which makes it also a useful tool for determining embedding dimension when constructing stochastic models.
منابع مشابه
Model Based Method for Determining the Minimum Embedding Dimension from Solar Activity Chaotic Time Series
Predicting future behavior of chaotic time series system is a challenging area in the literature of nonlinear systems. The prediction's accuracy of chaotic time series is extremely dependent on the model and the learning algorithm. On the other hand the cyclic solar activity as one of the natural chaotic systems has significant effects on earth, climate, satellites and space missions. Several m...
متن کاملInferring gene regulatory networks from time series data using the minimum description length principle
MOTIVATION A central question in reverse engineering of genetic networks consists in determining the dependencies and regulating relationships among genes. This paper addresses the problem of inferring genetic regulatory networks from time-series gene-expression profiles. By adopting a probabilistic modeling framework compatible with the family of models represented by dynamic Bayesian networks...
متن کاملA Novel Method for Detection of Epilepsy in Short and Noisy EEG Signals Using Ordinal Pattern Analysis
Introduction: In this paper, a novel complexity measure is proposed to detect dynamical changes in nonlinear systems using ordinal pattern analysis of time series data taken from the system. Epilepsy is considered as a dynamical change in nonlinear and complex brain system. The ability of the proposed measure for characterizing the normal and epileptic EEG signals when the signal is short or is...
متن کاملAnalysis of Changes on Mean Particle Size in a Fluidized Bed using Vibration Signature
Vibration signals were measured in a lab-scale fluidized bed to investigate the changes in particle sizes. Experiments were carried out in the bed with a different mass fraction of coarser particles at different superficial gas velocities, and probe heights. The S-statistic test evaluates the dimensionless squared distance between two attractors reconstructed from time series of vibration signa...
متن کاملThe NetCover algorithm for the reconstruction of causal networks
We present the NetCover algorithm, a method for the reconstruction of networks based on the order of nodes visited by a stochastic branching process. Our algorithm reconstructs a network of minimal size that ensures consistency with the data, and we verify performance on both synthetic and realworld data. We show that, crucially, the neighbourhood of each node may be inferred in turn, with glob...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 80 4 Pt 2 شماره
صفحات -
تاریخ انتشار 2009